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REGRESSION-ADJUSTED ESTIMATES FOR REGENERATIVE SIMLATIONS, WITH GRAPHICS,

P. Heidelberger P. A. W. Lewis * -

IBM, T.J. Watson Research Center Naval Postgraduate School
Yorktown Heights, N.Y. 10598 Monterey, Calif. 93940

Dist secial

ABSTRACT Js I

The independent block structure of regenerative processes and t

vergence rates of the means of ratio estimators are exploited to produce bias-free

regression-adjusted estimates (AAfe's) for regenerative simulations. Direct assessments

of the variances of the estimates are obtained, as well as indications--both formal and

graphical--of normality and symmetry, or lack of it, in the distribution of the estimates.

1. INTRODUCTION

In regenerative simulations one exploits the fact that the sample path of the

simulated process, say {Wi, i > 0), can be divided into independent and identically
distributed (i.i.d.) blocks of lengths {Tit J 2 11. For example, let the quantity of

interest be the expected stationary waiting time, E(W), in a queue and let Y be the

sum of the waiting times observed in the Jth block. Then the usual regenerative

estimate, )e(n), of E(W), formed from n blocks is Ae(n) - Y/' where Y and

are the averages of {YI,'" , Yn}, and {T1 9... T n}, respectively. This estimate con-

verges to E(W) as n gets large and the so-called "statistics" of regenerative

simulation exploit the fact that Ae(n) is asymptotically unbiased and normally dis-

tributed with a variance of a known form which can be estimated from the data [Crane,

and Iglehart (1975); Crane and Lemoine (1977); Iglehart (1978)].

An advantage of the regenerative estimate is that it eliminates the problem which

arises in straightforward simulations of choosing initial conditions so as to make

(Wi, i ) 01 stationary and W, the sample path average, unbiased. It is crucial to

understand that the initial conditions are of importance only for finite sample

* Work supported in part by the Office of Naval Research under Grant NR-42-84.
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sizes so that the advantage of ke(n) over W disappears asymptotically. Given

this advantage, the regenerative estimate is usually employed and a single sample path

is used for as long as one needs to simulate in order to achieve a given precision. At

that point the simulator assumes that the point estimate &e(n) is both unbiased and

normally distributed. There are several problems involved in this "flying-blind"

procedure besides the fact that the assumptions of normality and no bias are typically

not verified and may not be true. Most notably, it is not known how to adjust confi-

dence interval widths to allow for the fact that the variance is estimated from the data

and is usually highly positively correlated with the point estimate. This correlation

is particularly troublesome in sequential procedures which use a relative confidence-

interval-width criterion for determining simulation run lengths.

A method which is preferable to using a single sample path would be to generate

a i.i.d. sample paths, form an averaged estimate from the m estimates obtained and

then produce the usual standard deviation estimate for a sample mean. Unfortunately

taking m sample paths of length n/m only aggravates the concern with bias and

normality of the estimate which occurs with both the straightforward and regenerative

methods.

In this paper we exploit two aspects of the regenerative structure of the simu-

lated process to resolve this dilemma. The first is that the regenerative blocks

are i.i.d. so that a single simulation of n cycles can always be sectioned into k

i.i.d. simulations of nk - n/k blocks per section for multiple values of k. Thus

from a single simulation of n blocks, unbiased (but correlated) estimates of

E(A4(nk)) can be obtained for the multiple values of nk. Secondly, unlike the

estimate W, the regenerative estimate has known bias structure, i.e.,

E((n)) - E(W) + 0 /n + B,/n 2+ *'. • Combining these two facts and using regression

techniques an estimate and a graphical picture of the bias structure can be obtained.

More importantly, a regression adjusted regenerative estimate, ume(n), for E(W))

can be produced which corrects for the bias.
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This procedure can itself be replicated, say, m times producing m i.i.d.

estimates Ai(l,n),...,aAe(m,n) with low bias and the value E(W) can then be

estimated by aA4a(m,n), the average of these m Aa (j,n)'s. Furthermore plots showing

the evolution to the unbiased state can be produced along with box plots displaying the

distributions of the estimates. Running normal plots with normal test statistics can

also be given for various subrun lengths nk . These plots allow the user to judge the

subsample length n at which 4Ae(l,n),...,AaVe(m,n) can be assumed to be normally

distributed. Using this sample of m Ame's a standard deviation estimate, 4AAe(m,n),

for the averaged zteza ate(m,n), is obtained from which a confidence interval for

the steady state parameter is derived. Furthermore the sample of m, Aaue(l,n),...,

atae(m,n); is available to do comparisons and rankings and to form multidimensional con-

fidence regions (when more than one parameter is of interest) using standard normal

theory statistical methodology or nonparametric methodology.

Other techniques which reduce bias in regenerative estimates are the jackknife

and Tin estimates [Miller (1970); Iglehart (1975)] and estimates based on renewal

theoretic properties [Heidelberger (1978), and Meketon (1979)]. As generally applied

these techniques remove only the 1/n term in the bias expansion (the jackknife can

2
be modified to remove the 1/n term at a great computational cost and an uncertain

effect on the variance of the resulting estimate). However, no guidance is given as

to when this bias reduction is sufficient and the jackknife is known to inflate the

variance in finite samples [Efron and Stein (1978); Goodman, Lewis and Robbins (1971)1.

Furthermore, the problems of correlation between the point and variance estimates and

of detecting normality are not relieved by these alternative estimators. The regres-

sion and graphical procedures given in Sections 3 and 4 could be applied to estimates

for which the 1/n term has already been removed, by, for instance, jackknifing, al-

though this seems redundant. In practice the bias becomes insigificant long before the

assumption of normality is valid, particularly when bias reducing techniques are applied.

The work in this paper is related to that of Fishman (1977) who used replica-

tiona with the Tin estimate to reduce bias, and a normality test. The strength of the
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regression adjusted regenerative estimate in conjunction with the graphics is that one

obtains a very clear picture of how the bias is changing and at what point it is insig-

nificant. In addition, the running normal plots show the convergence to normality.

To apply the methodology given in this paper in practice requires a relatively

sophisticated user to interactively interpret the output. This sharply contrasts with

previous automated sequential procedures [Fishman (1977) and Lavenberg and Sauer (1977)],

which require no human intervention, but which provide the user with far less informa-

tion,particularly about the dynamics of the simulation.

2. OBJECTIVES AND OUTLINE

The various regression adjusted estimates are described in Section 3 of the paper

and the graphics which has been developed to go with them are described in Section 4.

In Section 5 we describe a protocol which directs the simulator in the use of the above

methodology.

The objective of this protocol is to produce, for a given precision or total

available computing, estimates AaAe(J,m), J = 1,...,m, from the shortest possible

number of blocks per replication such that the aAe(J ,m) 's are approximately

(i) unbiased;

(ii) normally distributed.

The minimization of the number of blocks in each replication is done in order to optimize

the number, m, of replications of the simulation from which

(i) a standard deviation estimate 4'c4e(m,n) for the averaged "te estimates,

a4aA(m,n), is obtained;

(ii) a confidence interval for the parameter is obtained using 4AA'e(m,n)

and aJWAL(m,n);

(iii) a sample of m 44Q(j,n)'s is obtained to do comparisons, rankings, etc. using

standard normal theory statistical methodology or nonparametric techniques.

Of course in some situations it may well be that not enough independent blocks can

be simulated to be able to obtain replications. The utility of the proposed procedure

A4



then is that even though the user is forced back onto the regular regenerative estimate

SAt(n) he is not doing so blindly. Moreover, the single regression adjusted regenerative

estimate 4/44(n) provides him with an essentially bias free alternative to the regen-

erative estimate.

In Section 6 examples of the use of the protocol and its graphical displays are

given for three queueing models and in Section 7 simulation results on the relative

properties of 4e(nm) and allme(m,n) are presented. Section 8 contains a summary,

indicates related topics for further research, and gives examples of situations other

than regenerative simulations for which this methodology applies. Table 4 gives a

summary of the notation used in the paper.

3. THE REGRESSION ADJUSTED REGENERATIVE ESTIMATE

Under broad conditions the expected value E(Ae(n)) has the form

E Oe(n)) - B0 + Yln-1 + 82 n - 2 +..o, (3.1)

where B0 - E(W). Let a section of n regenerative blocks be broken up into subsections

of lengths nk for k - 1,...,K and let mk - [n/nk], where [x] denotes the greatest

integer less than or equal to x. For each k, mk regenerative estimates, A(J,nk),

J - l,...,m, are formed from disjoint blocks of nk cycles.

Regression adjusted regenerative estimates are formed by estimating B0  in

(3.1) using the 4e(j,nk)'s for J = 1,...,mk , k " 1,..., K, and the equation (3.1)

to some degree d - 1,2, or 3. This can be done in three distinct ways:

(i) By forming average regenerative estimates, aAe(mk,nk), for k = 1,...,K

where a e(mk,nk) - 1j., ke(jnk)/mk, and using these as dependent variables in the

regression on + d. The averaging will tend to make the dependentregesson n 0 + n1  +*..+ odn Th

variables more normal than the individual &e(j,n k )'s and since var(ke(j,nk))

y/nk + 6/n 2 +.o, then if we neglect the higher-order terms var(ate(uk,nk)) is

approximately y/n for all k - 1,...,K. Thus an unweighted least squares estimate

of 0 will produce 0, the )AL(n) estimate unbiased out to terms up to 1/nd"
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(ii) By using the te(i,nk)/mk for j - l...,mk, k 1 ,...,K in a weighted

regression on O + (l/Iuk)zk + (8d/Ik) d. This is equivalent to (i) if

least squares estimation of 09,... ,1 d is performed.

(iii) Since it will be seen in later sections that e(J,nk) is highly non-normal

for small nk, robust regression methods could be used to eliminate the influence of

outliers. However, since the te(j,nk)'s are generally not symmetric random variables,

the 0 estimate will generally be biased.

In this paper the Aaue estimate is always 0  obtained as in (i), which like

e(n) is a statistic involving (Y,...,Y n) and (Ti,...,Tn). The use of robust

regression techniques will be described elsewhere.

There are still three problems which make the regression non-standard:

(1) How large should K be, given that it must be at least greater than d+l?

(ii) The aAe(mk,nk) are correlated, which seems to mitigate against making K

too large.

(iii) Given that K is chosen, how should the nk be chosen? This is an experimental

design problem.

These are difficult and comprehensive analytic problems, not considered here.

However, it is possible to show that the correlation between aJe(mk,nk) and

au(m i n ) converges to one if n -o in such a way that mk and mj are fixed

divisors of n. Furthermore in this case var(4aQe(n))/var(Ae(n)) also converges to

one. For small to medium sample sizes one suspects that the correlation will inflate

the variance of the JLke(n) estimate as compared to the variance of the )te(n)

estimate. This frequently happens in small samples with the jackknife. However,

simulation studies presented in Section 7 show that var(Aae(n)) is only very

slightly larger than var(te(n)) and that this result is robust with respect to the

choice of K and the nk's. Of course, choosing nk too small will result in non-

normlity and, possibly, bias (the degree, d, being inadequate).

We emphasize here that the preference for the aAe(n) estimate over and

above a jackknife estimate or a Tin estimate, is that its components allow one to
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study the evolution of the regenerative estimate. The graphics to do this are die-

cussed in the next section.

Of course one utility of the jackknife is that it can be used with small samples

that a jackknifed variance estimate is available. However, this last advantage is not an

issue here since a standard variance estimate is available for regenerative estimate

Ae.(n); furthermore, once a sectioning into m sections is achieved, even this can be

dispensed with. A regression-based estimate of the variance of ke(n) can be constructed

* but is not discussed here.

4. DESCRIPTION OF THE GRAPHICS

Three different types of graphs are used to display and analyze the output.

The first two, the Basic Graph and the Retrenched Graph, are quite similar and are

concerned with identifying the evolution of bias, skewness and departures from normality

(in the form of individual outliers or outlying sample paths) in the regenerative and

JEOme estimates. The third graph, the running normal graph, specifically displays the

convergence to normality of the estimates. These three types of graphs, described

in this sectionsall deal with the data of primary concern, namely, the Jke, aLe, Lake,

and awate estimates. They are novel and are adaptations of ideas which are pertinent

in other estimation contexts.

(Other plots that may be of interest in a regenerative simulation include

histograms and box plots of {Y k9 k > 1} and {Tk > 1). Scatter plots of

(Y ko Tk ),k > 11 show the high correlation that typically exists between Y k andT.

These last three plots are useful in explaining the skewed distribution often exhibited-

by regenerative estimates. However, since we feel their importance is secondary and

they are well known they will not be discussed here.)

We proceed by first describing the box plot which is a primary component of

* * the Basic and Retrenched Graphs. A description and interpretation of the Basic and

Retrenched Graphs comes next, followed by a description of normal plots and the

third type of graph, a sequence of normal plots called a running normal graph.

A protocol for the interactive use of these graphs is outlined in Section 5 and
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examples of its use is given in Section 6. The actual plots in this paper were pro-

duced on a Tektronix 4013 terminal using an APL graphics package. The user may wish

torfr to Table 4 for a summary of the notation used in the paper.

A convenient and compact technique for displaying the distribution of a batch

of data is the box plot. These plots were introduced by Tukey (1977), although we

prefer the form adapted by McNeil (1977). The box plot is an excellent tool for

identifying skewness and asymmetry in the data as well as for detecting outliers.

The plot is therefore well suited to analyzing the often highly skewed and sometimes

wild output of queueing simulations (see, e.g., the left-most box plot of Figure 4C

at n - 50; the 160 regenerative estimates which make up the box plot are highly

positively skewed and clearly non-normal).

Figure 1 shows a sample box plot. The body of the box plot displays the median

*and the lower- and upper-quartiles of the data. Let q represent the (estimated)

* interquartile distance; q -upper quartile minus lower quartile. Those data points betwee

the lower quartile minus 1.5q and the lower quartile minus q are marked by light circles,

* as are those data points between the upper quartile plus q and the upper quartile

plus 1.5q. Those values below the lower quartile minus 1.5q or above the upper quartile

* plus 1.5q are marked by dark circles and are meant to be indicated as outliers. For

normally distributed data, approximately 5% of the points should be marked by light

circles, but only about 1 in 200 should be marked by dark circles. One problem with

box plots is that they suppress sample size and this can lead to erroneous inferences;

see McGill, Tukey and Larsen (1978) for extended box plots which take account of this.

* For samples of size less than 9 the box plots are not very meaningful and the data points

are laid out vertically by magnitude for visual inspection.

4.2. The Basic and Retrenched Graphs

The two primary graphs used in the output analysis are the Basic Graphic and

the Retrenched Graph. The Basic Graph provides, in the first stage of the protocol,

8



SAMPLE BOX PLOT
PLOT OF 50 POINTS

U UPPER QUARTILE + l.SxINTERQUARTILE DISTANCE

__ LARGEST VALUE s UPPER QUARTILE + INTERQUARTILE DISTANCE

__ UPPER QUARTILE

__ MEDIAN

__ LOWER QUARTILE

SMALLEST VALUE LOWER QUARTILE - INTERQUARTILE DISTANCE

0 LOWER QUARTILE - l.SxINTERQUARTILE DISTANCE$

INTEROUARTILE DISTANCE = UPPER QUARTILE - LOWER QUARTILE

FIGURE 1. Example box plot for fifty data points from a regenerative
simulation. The interquartile distance equals the estimated
upper quartile minus the estimated lower quartile. The light

circles are data points which fall between the largest value
less than or equal to the upper quartile plus the inter-
quartile distance and the upper quartile plus 1.5 times the
interquartile distance. The dark circles are data with values
above this latter point. Similarly for the lower part of
the box plot.
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preliminary estimates of the section length, n, and the degree of the polynomial, d,

needed in the regression to reduce the bias to an inconsequential level. As the total

run length increases, the Retrenched Graph is used to adjust these quantities and to

monitor the distributional convergence of the Le's, ae's and 'aAe's.

The Retrenched Graph displays the results of performing m i.i.d. replications

of the regression as described in Section 3. The Basic Graph is essentially a special

case of the Retrenched Graph with a - 1. Examples of Basic Graphs are Figures 3A,

3B, 4A and 5A while Figures 3C, 3D, 3F, 3G, 31, 4B, 4C, 4D, 4E, 4G and 5B are all

Retrenched Graphs. The following discussion describes the features of the Retrenched

Graph; it applies as well to the Basic Graph with m set equal to one. Following the

description is a discussion on interpreting the results of these graphs.

Let the total run length of N cylces be divided into m replications of n

cycles per replication (or section). Let the subsection lengths within each section be

{nk, k - 1,...,K} and let mk be the number of regenerative estimates, U(j,nk), formed

from nk cycles, that may be obtained from a total of n cycles; then mk - [n/nk].

In the Retrenched Graph (see e.g. Figure 3C), the x-axis runs from 0 to n cycles.

Additional positions along the axis are provided for

(i) the single %e(mn), the regenerative estimate from the whole sample, marked by *

and labelled REG on the right-hand side of the graph;

(ii) the single a~ate(m,n) estimate, labelled ARARE and marked by o, with a

horizontal line through it and

(iii) the box plot at position ARARE of the 4aAe estimates.

Let aAe(mmk,nk) be the average of the aAe(mk,nk)'s, i.e. a/et(mmk,nk)

jml aAej(,mk,nk)/m where ake(j,mk,nk) is the realization of a e(m,nk) on the jth

replication. The set of points {nk, aAe(mmk,nk)), k - 1,...,K) are denoted by stars;

these are unbiased point estimates of {E(Qe(nk)), k - 1,...,K). The average bias curve,

i.e., the set of points {(nk id an -i), k - 1,...,KI where d is the degree of

fit and ai is the average of the m i.i.d. estimates of the coefficient of n- i in

10



the bias expansion, is plotted as a connected curve. The horizontal line at height

oAau(m,n) represents the asymptote of the average regression curve. A box plot of

either ({Ae(J,mk,nk), J - l,...,m) (as in Figure 4G) or {Ae(j,nk), J = 1,...,fk }

(as in Figure 4C) is displayed at x-axis position nk for each k. If less than

nine points are available for a box plot, the individual values are plotted as magnitude-

ordered circles rather than displaying a box plot for so few points; it is simple to

see the spread and location of the estimates this way.

A count of the number of %ake(j,n) estimates which are less than xe(nm) is

given: this gives a rough sign-test for lack of bias in the {utke(j,n)}, with

Jte(mn) being used as the true value. The values of au4ae(m,n), 644ke (m,n), ke(nm)

and o(nm), the usual regenerative standard deviation estimate based on all nm cycles,

are printed below the x-axis. In the BASIC GRAPH when m = 1 the ARARE standard

deviation is set equal to zero; the intent is to eventually use here a regression based

estimate for the standard deviation of Ae(n):

With regard to interpretation, the ideal is a Retrenched Graph for which

(i) the average bias curve is smooth and, beyond [n/2], close to its asymptote and

relatively flat ;

(ii) the estimates &e(nm), aau(m,n) and are(m,n) do not differ substantially;

(iii) the distributions of {'Le(j,n), J - l,...,ml and {Aa'e(j,n), J - 1,...,ml

are symmetric about ke(nm) and their respective means, and

(iv) 6A e(m,n) and a(nm) are approximately equal.

Figure 4G is Just such a graph. When n is small enough that uL(n) is still biased

and )ume(n) needs to be used as a less biased estimated, this bias shift will show

clearly in the relative shift of the box plots of the UL(J,n)'s and the Ufte(j,n)'s

as in Figure 4C.

Properties (i) and (ii) listed above and illustrated in Figure 3B are the ideals

in a Basic Graph. Because of the high correlation between are(2,[n/2J) and u(n),

a flat bias curve beyond [n/2] indicates that the difference between E(ke(n)) and

n11



E( ((n/2]) is small. This implies that the bias in )e(n) is also small. The

Basic Graph is therefore very useful in determining the section length, n, to be

replicated even though the variability in the estimates may still be substantial.

Since a Basic Graph consists of a single replication, only limited distributional

information can be learned from it. However, the distributions of {4e(j,nk),

J - 1,...,m k) will give the user a general idea as to the variability in the data.

Further interpretation of these graphs i given in the protocol of Section 5

and the examples of Section 6.

4.3. Normal Plots and the Running Normal Plot

To detect a normal distribution, a more detailed analysis of the data than

is possible with box plots is accomplished with normal plots. A number of statistical

tests accompanying the normal plots may be used to formally test the hypothesis of

normality. Normal plots [see e.g. Wilk and Guanadesikan (1968)] are formed as follows.

Let X - {XI , X2, ... , Xn I be an i.i.d. sequence of random variables with

continuous distribution function F(x), -- < x < -. Let O(x), - < x < -, be the

standard normal distribution function and let 0-i(.) and Fl be the inverse

distribution functions of 0 and F respectively. Let X (1) < X(2) < ... < X(n)

be the order statistics of X. An estimate of F-1 (k/n+l) is X(k) and for any

(k)constants a, b (b > 0) a plot of the pairs of points {(-l(k/nl), (X(k)-a)/b),

normally distributed random variables (i.e. F - t). We standardize the plot by

setting a n - nk /n and b2 = S 2 .,1 (Xk) 2 1(n-l). Departure from linearity

in this normal plot indicates non-normality.

Formal tests of normality that we use include the Shapiro-Wilk statistic

(1965) which was also used by Fishman (1977). For ease of computation

we apply the test to at most 50 of the points. The significance level of the test

was computed using the approximation in Shapiro and Wilk [1968]. Additional test statis-

tics are the coefficients of skewness and kurtosis (Snedecor and Cochran (1967), p. 86)

estimated by 3J2) - 3, respectively~where 1,- X,!Jn03 2and (P4 2n (Xk-k 1

12



If the Xk's are normally distributed, then for large n these moment statistics are

approximately normally distributed with means zero and standard deviations A6/n

and 124/n respectively. A coefficient of skewness or kurtosis that differs from

zero by more than about two times its standard deviation indicates significant

departure from normality. Older tests of normality were based on these sample

coefficients; recently interest has renewed is using the pair of statistics as

a test for normality (see Shapiro and Wilk (1965)).One can also use Kolmogorov-

Smirnov type statistics suitably adapted for the fact that the mean and standard

deviations are estimated from data (Lilliefors (1967)).

Figures 3E, 3H, 3, 4F, and 4H are examples of a sequence of normal plots

of simulation generated estimates; we call this a running normal plot. The goal

of these graphs is to monitor the convergence to normality of the regenerative

estimates %e(j,nk) and to determine at what point normality may safely be assumed

to exist. In addition to the features previously mentioned, a line through (0,0)

with slope one is drawn for each normal plot in the sequence. For any subsection

length, nk, either {4e(j,nk), J - 1,...,mkml (as in Figure 4F and labeled REG) or

{a e(j,nk), J - l,...,m} (as in Figure 4H and labeled AREG) may be plotted in

addition to a plot of {4au(j,n) j = 1,...,m}.

Placing multiple normal plots on a single running normal graph is very useful

in identifying trends in convergence. For example, in Figure 4F the plots of

{)te(j,500)}, {4e(J,lO00)1 and {4aJe(j,1000)} when examined individually do not

indicate significant departures from normality. However, when placed in sequence

along with the plot of {Ae(J,250)1, they are seen to exhibit a pattern of skewness

and nonnormality similar to that of {((J,250)} (although to a lesser extent). Since

normal plots and tests are difficult to interpret for small data sets, the comparison

between normal plots at small and large values of n is helpful.
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5. A PROTOCOL FOR SEQUENTIAL. APPLICATION OF THE GRAPHICS

The followinag protocol outlines the sequential use of the regression adjusted

regenerative estimates and graphics in analyzing the output of a simulation. The

objective is to determine the t6tal run length needed to achieve a given precision in

the simulation and to obtain a sectioning of that run length into m replications so

that the resulting 4a~e estimates are approximately unbiased and normally distributed.

The protocol consists of two stages. The first stage of the sequential protocol pro-

vides a preliminary estimate of the section length and the degree of the fitted regression

curve which is needed to eliminate the concern over bias, i.e. to obtain an approxi-

mately bias-free 4A~e estimate. It also provides an initial estimate of the simula-

tion's variability. The second stage of the protocol increases the run length until

the desired accuracy is achieved. The degree and section length are adjusted along

the way to maintain low bias and increase distributional syimmetry. When the final

accuracy is achieved, further adjustments are made to gain normality in the estimates

from each section.

We suggest that between 10 and 20 replications be available at the end of the

simulation, since an adequate estimate of the variance requires at least 10 observa-

tions (replications). Twenty observations should be sufficient for most comparison

purposes (Mosteller and Tukey, 1977, Ch. 7) and keeping more than 20 sections will

only slow convergence to normality. Thus, for example, if the plots showed that the

required precision was obtained with 40 sections,each of length 100 cycles, and that

the JLWe(J,lOO)'s were approximately normal, we would still recommend refiguring the

simulation to 20 sections, each of length 200--cycles.

The protocol is intended only as a guide and a user need not adhere to it

strictly. The whole point of the graphics is to assist users in exercising their

own judgment.

Throughout the protocol we use N to represent the total simulation run

length (in cycles). The section length, or number of cycles per replication, is
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denoted by n and m is the number of sections, or replicaticns; thus M = (N/n].

The subsection lengths, picked on the basis of empirical tests such as those detailed

in Section 7, are defined by nk - [n/k] for k -1, 2, 3, 4, 7, 10.

I. Stage I-Pilot run

1. Set No M initial run length.

002. Simulate a total of NO  cycles.

a. Set m - number of replications 1

b. Set n - section length = number of cycles/replications = N0

c. Set subsection lengths nk - (n/k], k - 1, 2, 3, 4, 5, 7, 10.

3. Form Basic Graphs for degrees d - 1,2,3.

a. Pick smallest d so that regression curve is smooth and fits data well. If no

such d can be determined increase N0  and go back to 1.2.

b. Find n*, the smallest nk so that the regression curve is nearly flat beyond

n* and there is little difference between ate([n/n*],n*), Aot(n) and

OeQ([n/n'],n') for n' > n*. If no such n* can be determined increase N0

and go back to 1.2.

c. Based on the spread of points in the Basic Graph and the regenerative

standard deviation estimate, a(N0 ) project a new estimated run length

N to yield desired accuracy.

d. Set n = n* and go to Stage II.

(Note that one may conclude at this point that the regenerative cycles are so long

that for a given precision one must accept a biased and/or non-normal regenerative

estimate, although it would be better to accept the less biased but still non-

normal regression adjusted regenerative estimate. Note too in the case where the

variability of %e(N0) and 'Lte(N 0 ) is high, the "power" of the procedures is

low and the decisions made here may have to be modified in Stage It.)
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II. Stage II-Retrenchment and Fine Tuning

1. Simlate a total of N cycles.

2. Set m - [N/n], where n was determined in Stage I.

3. Form Retrenched Graphs for degrees d - 1,2,3.

a. Pick smallest d giving good fit to {We(mmk,nk)).

b. If m > 20 and either

i. (-mn) or aktze(m,n) show substantial bias as indicated by the

average regression curve being far from its asymptote, or aAa e(m,n)

or J0 e(m,n) being significantly different from Ue(N), or

ii. Box plots of {&e(j,n)) or {AaLe(jn)1, J - l,...m, indicate asymmetry

then double n and go back to 11.2.

c. Otherwise if M ake(m,n) and o(N) are sufficiently small to yield the desired

accuracy go on to II.4; otherwise project a new run length N to yield

desired accuracy and go back to II.1.

4. If m > 20 set m - 20; if m < 10 set m -10. Set n - [N/m].

a. Form Retrenched Graph and adjust the degree as in II.3.a.

b. Form normal plots of {AaAe(j,n)}; {Le(j,n k } and {ajte(j ,mk,nk)} for

k - 1,2,4.

c. If normality is indicated then stop.

d. If normality is not indicated, then

i. if m - 10 increase N if possible and go to II.1 ;

ii. otherwise reduce m, *eeping m > 10, and go to II.4.

Note that in this Stage we are trying (i) to fix more accurately the

sample size needed to attain the desired precision in the final estimate;

(ii) to section so as to get enough degrees of freedom(m-1) in the variance estimate,

64L2 (m,n), so as not to sacrifice precision in this estimate, and (iii) to keep n
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as large as possible so as to ensure that the Aa4Qe(j,n)'s are approximately

normally distributed. The decision may, however, be that these abjm-

tives cannot be met and a specific compromise has been adopted. This case will be

illustrated in the third example in the next section.

6. SOME EXAMPLE QUEUEING SYSTIM SIMULATIONS

In this section we give examples of the use of the protocol and the asso-

ciated graphics and estimates in the analysis of the output of some simple queueing

systems. The systems are two single server queues with high traffic intensities and

a closed queueing network model of a computer system. The single server queues,

the //I and M/G/il queues with traffic intensity 0.90 [see e.g. Kleinrock, 1975],

though simple in structure, exhibit substantial bias, produce highly skewed output

and require very long run lengths before stabilizing. They therefore provide

challenging tests of the methodology.

The closed queueing network on the other hand, requires relatively few

cycles before stabilizing. This example shows that the graphics can be of use even

when few cycles are needed. However, when the number of cycles is so small as

to preclude use of the Retrenched Graph, the assumptions of low bias and normality

cannot be verified and caution should be exercised. In fact the conclusion may be

the precautionary one that the regenerative estimate is very likely biased and non-

normal, the non-normality applying also to the regression adjusted regenerative

estimate.

a. The M/G/l Queue (Examples I and 2)

Let {Wn, n > 0} be the waiting time of the nth customer in a single

server queue and let {An, n > 11 and {Sn , n > 0} be the i.i.d. sequences of

interarrival and services times respectively. The waiting time sequence is defined

and ~ + + XO.Asm
by W0 -0 and Wn+l (Wn + Sn -An+l) for n> 0 where x mmx(x,0). Assume
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An  Is exponentially distributed with mean l/X and let Sn be hyperexponentially

distributed; P(S > X) - 1-G(x) - p exp(-ul1 x) + (l-p) exp(-l 2 x). Then
2 2 2 - 2

B(Sn ) " 1/u " P/pI + (l-P) e Variance(S) = 82 + 2 - 2

and the coefficient of variation of Sn  is C pa If the traffic intensity

is p - A/p < 1 then regenerations occur whenever W - 0 and the waiting timen

has a stationary distribution with mean E(W) - p(l + C2 )/f (1-p)} (see Kleinrock (1975)).has

If p - 1 then the queue is known as the M/M/i queue. For the M/M/i queue of

this section (Example 1) A - 0.9, V - 1.0, p - 0.9 and E(W) - 9.00, whereas for

the M/G/i queue (Example 2) A = 0.9, )i = 0.5, P2 - 2.0, p = 0.33, p - 0.9 and

E(W) - 13.42.

b. Closed Queueing Network (Example 3).

Consider the queueing network pictured in Figure 2. This network is a model

of a timesharing computer system. There are R service centers with a fixed number,

T, of customers in the network. Service Center I consists of T terminals. The

terminal users submit jobs to a computer system consisting of a CPU (Service Center 2)

and a number of peripheral input-output devices (Service Centers 3, ..., R). The

CPU operates under the processor sharing discipline while the peripherial devices
-i

are each first-come, first-served single server queues. Let V1  be the mean of

the exponentially distributed service times at service center i. Routing through

the network is Markovian and the routing probabilities are given in Figure 2.

By assuming that all service and routing mechanisms are mutually independent then

- {Q(t), t > 0) is a continuous time Markov chain where _(t) - (QI(t),...,QM(t))

and Qi(t) is the number of customers in service center i at time t. The assump-

tions on the service distributions and disciplines and on the routing are such that

the equilibrium distribution of the network exists and has a product form (Baskett,

at al. (1975)). Define a response time to be the time from when a customer leaves

service canter 1 until that customer next returns to service center 1 and let W n
n

be the just completed response time of the nth customer to arrive at service center 1.

18



Then W N {W, n > 0) is regenerative with regenerations occurring at points n

such that the nth customer arrives at service center 1 leaving centers 2, ... s. R9

empty. Again we shall be interested in the expected stationary response time

E(W) which is known to be finite (Lavenberg and Sauer (1977)). Let p be

the steady state utilization of service center i. The particular parameters chosen

for this model are listed in Figure 2 and yield p 2 - 0.894, pi M 0.268 for i > 3

and E(W) -8.65.

The application of the methodology to these three examples is given in the

Figures; each Figure has a Caption and an Interpretation which, when read sequen-

tially describe the evolution of the simulation.
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Closed Queueing Network

Terminals310

p3
p

SERVICE I
CENTERR

System Parameters

T -10 R=6 E(W) =8.650

-1 1i-
1-.10.0 12 =0.250 -0.300 for i> 3

p -0.850 P, .25 0 for i> 3

P2 -0.89 P, .268for i> 3

FIGURE 2. Closed queueing network which models a timesharing computer

system.
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BASIC GRAPH
M/M/1 p=O.9

I REPLICATIONS OF 500 CYCLES
BOXPLOTS OF REG ESTIMATES

20-

16 
0 0/ 1
0 0 RARES s REG

12
Go

0L

8

50 166 500 ARARE REG

ARARE ESTIMATE 10.28
ARARE STD DEV .00
REG ESTIMATE 10.13
REG STD DEV 2.08
DEGREE OF FIT : 3

FIGURE 3A. Example 1. Stage I, steps 1 and 2. No set at 500 cycles. A
decision has been made on the basis of similar graphs that
d - 3 is probably needed.

Interpretation. Since the precision (2oa/) is about 40%, and the
regression curve is still coming up to the asymptote, N0 - 500
may be too small. Therefore return to Stage 1.1 and set
No = 1000.
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BASIC GRAPH
M/M/1 p=0.9

I REPLICATIONS OF 1000 CYCLES
2 BOXPLOTS OF REG ESTIMATES

16 0 /
0 o RARES REG

0

0
0

0
12-

8 00

0La

100 333 1000 ARARE G

ARARE ESTIMATE 10.74
ARARE STD DEV .00
REG ESTIMATE 10.71
REG STD DEV 2.03

DEGREE OF FIT 3

FIGURE 3B. Example 1. Stage I, steps 1 and 2 with No  increased to 1000.

Interpretation. Since the regression curve beyond 500
and e(1000) and uae(1000) are approximately equal, simulation
out to n - 1000 is likely to be adequate. Since it is estimated
that about 16 times as many cycles are needed to cut the standard
deviation down by a quarter, an exploratory excursion to
Stage II with N - 4000 is taken.
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RETRENCHED GRAPH
M/M/1 p=0.9

8 REPLICATIONS OF 500 CYCLES
BOXPLOTS OF AREG ESTIMATES

12 0

0

2/ 8
o RARES s REG

10 -0 0 0
:o S o o 0

- 00 0

0

6 0 0

0

0

0 a

, I I I I I I .I II

50 166 500 ARARE REG

ARARE ESTIMATE 9.26
ARARE STD DEV .78

REG ESTIMATE 9.23
REG STD DEV .91
DEGREE OF FIT 2

FIGURE 3C. Example 1. Stage II, step 3a. N 4000 and d cut back to 2.
Also n is cut back to 500 to determine whether,with this
greater precision, a firm decision can be made on section length n.
Note that the box plots are of the eAe(J,nk) which show less skew-
ness then the ke(j,nk) in Figure 3b.

Interpretation. The AAe&t(8,500) of 0.78 is lower than the
regenerative s.d. estimate of 0.91. Clearly about two to three
times as many cycles are needed. There is also still bias, as
illustrated by the upward displacement of the data points at ARARE
compared to the data points at n - 500. This shift is not
statistically significant but is reinforced by the fact that the
regression curve is increasing. The degree d - 2 is now seen
to give a good fit. For illustrative purposes the next step is
to repeat this Retrenched Graph with twice the number of cycles.
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RETRENCHED GRAPH
M/M/1 p=0.9

16 REPLICATIONS OF 500 CYCLES

14- BOXPLOTS OF AREG ESTIMATES

12 8 /16
RARES : REG

10 0_

8

6

4 ii ii I III

50 166 500 ARARE REG

ARARE ESTIMATE . 9.76
ARARE STD DEV . .54
REG ESTIMATE . 9.72
REG STD DEV .65
DEGREE OF FIT : 2

FIGURE 3D. Example 1. Stage II, step 3 repeated with N - 8000 for illustration.

Interpretation. The presence of slight bias in te(j,500) is
confirmed. It is also clear from the standard deviation estimates that
more cycles are needed to reduce the standard deviation to less than
0.5. At this point a running normal plot is helpful and is given in
the next figure.
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M/M/1 p=0.9 NORMAL PLOTS
16 REPLICATIONS OF 500 CYCLES

2- 00/

0

-2

REG[ 125 REG[ 5 REG[0 0 50 RARE

SHAPIRO-WILK .866( .000) .955( .234) .962( .673) .974( .873) (SIG LEV)
SKEW 1.143( .306) .362( .433) -. 216( .612) -. 075( .612) (SD SKEW)

KRRTOSIS .693( .612) -.751( .866) -.708 .225) -.634(.225) (SD KURT)

FIGURE 3E. Example 1. Supplement ot Figure 3D. N - 8000 cycles.

Interpretation. Note that while the Ae(J,125)'s are clearly non-
normal, there is no indication, graphical or from the test statistics,
of departure from normality either in &e(J,500) or ka'e(j,500). The
number of cycles will now be doubled to reach the desired precision;
but first the need to go to n - 1000 for reasons of bias is explored.
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RETRENCHED GRAPH
M/M/1 p=O.9

8 REPLICATIONS OF 1000 CYCLES
BOXPLOTS OF AREG ESTIMATES

12- 0
0

0
0 ° 3/ 8

@ RARES REC

10- * 0

0

0.0

.8
0

0 0 0
000

I t , I .. . l

100 332 1000 ARARE REG

ARARE ESTIMATE . 9.70
ARARE STD DEV . .63
REG ESTIMATE . 9.72
REG STD DEV .65

DEGREE OF FIT . 2

FIGURE 3F. Example 1. N - 8000 cycles. Illustrative retrenched graph giving
confirmation of the basic graph in Figure 3b.

Interpretation. The bias, if any, at n - 1000 is small, and
would be taken care of by using the u'rme(j,l000)'s instead of the
Ae(j,l000)'s. Notice the evolution of the extreme, low outlier.
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RETRENCHED GRAPH
M/M/1 p=0.

32 REPLICATIONS OF 500 CYCLES
BOXPLOTS OF AREG ESTIMATES

14

12 17 /32
RARES ! REG

10

8

6

4I
4 II I I I I I I I

50 166 500 ARARE REG

ARARE ESTIMATE : 9.11
ARARE STD DEV . .35
REG ESTIMATE . 9.06
REG STD DEV .42
DEGREE OF FIT . 2

FIGURE 3C. Example 1. Stage II, step 3 with N - 1600 cycles.

Interpretation. The two estimated standard deviations are close
and indicate that at least 10% precision has been attained. We
are at Stage II, Step 3C here and ready to go to Stage II, Step 4.
Since m > 20 and there is some bias, n should at least be doubled.
First we look at the normality in the next figure.
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M/M/1 p=0.9 NORMAL PLOTS
32 REPLICATIONS OF 500 CYCLES

0

///
2 e

0

-2-

REG[ 1251 REG[ 2501 REG[ 5001 RARE
SHAPIRO-WILK .866( .000) .942( .029) .961( .339) .965( .428) (SIG LEV)

SKEW 1.124( .217) .592( .306) .265( .433) .370( .433) (SD SKEW)
KURTOSIS 1.057( .433) -.404( .612) -.829( .866) -.570( .866) (SD KURTY

FIGURE 3H. Example 1. N - 16000 cycles.

Interpretation. Another look at normality with twice the amount of data

as was available in Figure 3D. Again there is no formal indication of depar-
ture from normality in the 4La"e(j,500)'s, but it is to be recalled that with
only 32 data points, tests for normality have relatively low power. A visual
comparison of the LAJL t(J,500)'s to the 4e(j,125)'s and 4e(J,250)'s indicates,
however, the possibility of nonnormality. Since m = 32 > 20, n is now doubled.
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RETRENCHED GRAPH
M/M/1 p=0.9

* 16 REPLICATIONS OF 1000 CYCLES

12 BOXPLOTS OF AREG ESTIMATES
0

0
9 16

10 0 RARES s REG10

6

100 332 1000 ARARE REG

ARARE ESTIMATE 9.06
ARARE STD DEV .37
REG ESTIMATE 9.06
REG STD DEV .42
DEGREE OF FIT 2

FIGURE 31. Example 1. N - 16,000 cycles. Final steps of Stage II of the
protocol. Note the similarity between this Figure and Figure 3F
illustrating the stability reached with this sample size.

Interpretation. The bodies of the box plots of the Aate(J,1000)'s
and the 4e(J,1000)'s (for j - 1,...,16) indicate that there is very
little to choose between them; their spreads are similar. Also there
are no extreme values or outliers. The estimated standard deviation
of 0.37, 44aAe(16,000) indices that better than 10% precision has
been achieved. A retrenched graph with degree d - 3 is indis-
tinguishable from this graph.
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M/M/1 p=O.9 NORMAL PLOTS
16 REPLICATIONS OF 1000 CYCLES

0

-2

m0

REG[ 250] REG[. 500] REG[ 1000] RARE
SHAPIRO-WILK .9.41 ( . 026) . 961 ( .339) . 992 ( . 999) . 988 ( .993) (SIG LEVl

SKEW .592( .306) .265( .433) -. 066( .612) -. 007( .612) (SD SKEW-
KURTOSIS -. 404( .612) -. 829( .866) -. 383(l.225) -. 319(l.225) (SD KURT

FIGURE 3J. Example 1. N - 16,000 cycles. Final look at normality Stage II, Step 4C.

Interpretation. For illustration the te(j,n k ) 's are shown, rather
than the atu(J,n k ) . There is no indication of departure from normality
in the am~e(J,1000)'s or the te(J,1000)'a.
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BASIC GRAPH
M/G/1 p=O.9

I REPLICATIONS OF 500 CYCLES
20 0BOXPLOTS OF REG ESTIMATES
20- 0

16 00 0/
0I " RARES ;REG

0

12

8*

4
0
0
p i p I I I

50 250 500 ARARE REG

ARARE ESTIMATE 11.06
ARARE STD DEV .00
REG ESTIMATE 10.37
REG STD DEV 2.76
DEGREE OF FIT 3

FIGURE 4A. Example 2. Stage 1, steps 1 and 2. N0 set at 500 cycles.
A decision has been made on the basis of similar graphs that
d - 3 is probably needed.

Interpretation. Because of the skewed service time, there
is more variability in this queue than in the H/H/l queue. The
regression curve is definitely still rising so that n - 500
may be too small. Also the precision is about 502, so that about
25 times more cycles are needed. An exploratory Retrenched Graph
is needed.
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RETRENCHED GRAPH
M/G/1 p=0.9

4 REPLICATIONS OF 500 CYCLES
BOXPLOTS OF REG ESTIMATES

0 0

1/ 4
15- RARES REG

10 0

00

0

50

0 II I I I I

5o 250 500 ARARE REG

ARARE ESTIMATE 11.72
ARARE STD DEV .74
REG ESTIMATE 10.89
REG STD DEV .94

DEGREE OF FIT . 3

Figure 4B. Example 2. Stage II, step 3a. No - 2000 and n = 500.

Interpretation. There is clearly still bias in the
ae(J,5OO)'s and a need for more precision. Four times as
many cycles are possibly needed; this is the "otherwise" of
Stage II, Step 3c.
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RETRENCHED GRAPH
M/G/1 p=0.9

16 REPLICATIONS OF 500 CYCLES
BOXPLOTS OF REG ESTIMATES

40

'0
0 0

10
3 0S0

0

0 i i n I I I
50 250 500 ARARE REG

ARARE ESTIMATE 12.77
ARARE STD DEV 1.01
REG ESTIMATE 12.70
REG STD DEV 1.04
DEGREE OF FIT . 3

Figure 4C. Example 2. Stage II, Steps 1 through 3 with N - 8000 and n - 500.
Interpretation. Note that the estimated standard deviations

have increased from their values in Figure 4B. This is because
several very long cycles were encountered; these show up in the
upper outliers in the k e(j,nk) box plots. We are back at the"otherwise" of Stage II, Step 3c and increase NO to 16,000.33



RETRENCHED GRAPH
M/G/1 p=0.9

32 REPLICATIONS OF 500 CYCLES
BOXPLOTS OF AREG ESTIMATES

0
25-

o 0
0

0 6
19 /32

20 0 0 8 RARES :5 REG
0

0 0
15

10

5!

9Q 9 ' I II Is0 250 500 ARARE REG

ARARE ESTIMATE 13.62
ARARE STD DEV .94
REG ESTIMATE . 13.78
REG STD DEV .87

DEGREE OF FIT : 3

FIGURE 4D. Example 2, Stage II, Steps I through 3 with No .16000 and
n - 500.

Interpretation. The point estimates have risen in value
and the estimated standard deviations have dropped, but not
quite enough to give 10% precision. Note that the true
E(W) - 13.42. There is clearly still some bias in the
4e(j,500)'s; of the AaAe(j,500)'s, nineteen are less than or
equal to 4e(16000).
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RETRENCHED GRAPH
M/G/1 p=0.9

20 REPLICATIONS OF 1000 CYCLES
BOXPLOTS OF AREG ESTIMATES

20 00

0 0 10 /200 RARES s REG

16 0

12

I ! I I II I I

100 333 1000 ARARE REG

ARARE ESTIMATE 13.43
ARARE STD DEV .75
REG ESTIMATE 13.44
REG STD DEV .75
DEGREE OF FIT 2

FIGURE 4E. Example 2. Stage II, steps 1 through 3 with No  increased to
20,000, the maximum number which computing constraints allowed.
The degree of fit is d - 2, sufficient for the purpose, as
compared to d - 3 in Figure 4D. The section length n is
increased to n 1000.

Interpretation. There is still indication of bias at
n - 1000, but more particularly of outliers in the 4e(j,1000)'s
and u4e(j,l000)'s which need to be looked at in a running
normal plot. Note that it is not quite possible to attain 10%
accuracy.
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M/G/1 p=0.9 NORMAL PLOTS
20 REPLICATIONS OF 1000 CYCLES

0 0 0

-2

REG[ 250) REG[ 500) REG[ 1000) RARE
SHAPIRO-WILK .890( .000) .968( .409) .959( .516) .943( .265) (SIG LEV'

SKEW 1.142( .274) .487( .387) .606( .548) .691( .548) (SD SKE';.
KURTOSIS 1.154( .548) -.097( .775) -.171(1.095) .056(1.095) (SD KUR ,'

FIGURE 4F. Example 2. Running normal plot accompanying Figure 4G.

Interpretation. The definite non-normality in the
Qe(j,250)'s is no longer apparent in the values of the test
statistics at n - 1000. However outliers are clearly apparent
in the ite(j,1000)'s and take(J,lO00)'s, suggesting, since
m - 20, that n be doubled. (Stage II, step 4d.)
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RETRENCHED GRAPH
M/G/1 p=0.9

10 REPLICATIONS OF 2000 CYCLES
BOXPLOTS OF AREG ESTIMATES

20

5 / 10
RARES ! REG

16 -

12

8

II I I I I I I I

200 666 2000 ARARE REG

ARARE ESTIMATE 13.54
ARARE STD DEV .83
REG ESTIMATE 13.44
REG STD DEV .75
DEGREE OF FIT 2

FIGURE 4G. Example 2. Stage II, step 4 with n increased to 2000,
which keeps m > 10, as required. To achieve the desired
precision 4000 more cycles would have been desirable.

Interpretation. The bias has been reduced but more
importantly the heavy tails in the estimates have disappeared
(as compared to Figure 4E) at all nk'S. To confirm these
results a running normal plot is created.
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M/G/1 p=0.9 NORMAL PLOTS
10 REPLICATIONS OF 2000 CYCLES

0

0 0 0

o00

00

0 0

0 0

00
-1000

AREG[ 500] AREG[IOO] AREG[2000] RARE
SHAPIRO-WILK .984( .982) .971( .890) .977( .944) .979( .952) (SIG LEV)

SKEW .319( .775) .143( .775) .118( .775) .032( .775) (SD SKEW) 
KURTOSIS -. 671(1.549) -1.090(1.549)-i.036(I.549)-1.048(I.549) (SD KURT)

FIGURE 4H. Example 2. Final check for normality with n - 2000 cycles.

Note that the plots at 500 and 1000 are of the Wata.Le(j,nk)'s.

Interpretation. The test statistics and the normal plots
confirm the apparent normality of the estimates at n - 2000,
although the sample size m - 10 is very small. The estimate

a44e(l0, 2000) would be preferred to wA(10,2000) because
of bias considerations.

38



BASIC GRAPH
QUEUEING NETWORK 1

1 REPLICATIONS OF 50 CYCLES
BOXPLOTS OF REG ESTIMATES

0 1/ 0
: RARES REG

8 800

0 a °

0

6

i n pl p I

5 16 50 ARARE REG

ARARE ESTIMATE 8.43
ARARE STD DEV .00
REG ESTIMATE 8.49
REG STD DEV : .23
DEGREE OF FIT 2

FIGURE 5A. Example 3. Stage I, steps 1, 2 and 3. No  set at 50 cycles:
Degree of fit is d - 2.

Interpretation. This initial basic graph shows that the bias is
probably very low at n - 50 and that the accuracy is already less than
6%. Clearly the ke(J,5)'s are non-normal but there is insufficient
data to judge the distributions of the other estimates. Since cycles
are relatively expensive, in practice a decision to terminate the
situation at this point would be made. Thus the assumptions of low
bias and normality are not confirmed. For purposes of exposition,
however, the 50 cycles are replicated 25 timed for the next figure.
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RETRENCHED GRAPH
QUEUEING NETWORK 1

.... 25.REPLJ.1&QTjQNS OF 50 CYCLES

12 BOXPLOTS OF REG ESTIMATES".

16/25

,0(

4

5 6ARARE ESTIMATE soAAE8.64RE

ARARE STD DEV .08
REG ESTIMATE 8.68
REG STD DEV .06
DEGREE OF FIT .2

FIGURE 5B. Example 3. Stage II. N - 1250.

Interpretation. This retrenched graph shows clearly that bias
is nonexistent at n - 50. Note that 16 of the 4ate(j,50)'s are
less than 40(1250). Note too the extreme negative skewness of the
te(j,50)1s; this seems to have disappeared by n - 50 both f or the
Wt(J,50)'s and ta4e(J,50)'s. The very flat bias curve and the
slight asymmnetry In the distribution of the 4ta~e(J,50)'s suggest
that the degree of fit in the regression could be cut back to one.
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7. EMPIRICAL RESULTS

In this section we empirically compare the relative properties of the estimate

te(man) and auuae(m,n) for the single server queues. These studies give the results

alluded to in Section 3; namely that the akaft(m,n) estimate has low bias, and variance

and mean squared error (mae) comparable to those of the regenerative estimate.

Furthermore confidence intervals formed using aate(m,n) and 64aLe(m,n) are valid,

i.e. the confidence intervals contained the true value with the correct, prespecified

probability. Thus even for large samples, a user looses nothing by switching from

the regenerative to the a AAe estimate. The substantial benefit of doing so is that

the user may easily judge what constitutes a "large sample" and at what point the

asymptotic theory is valid. In addition a4'e(m,n) and 4AaJe(m,n) were less

correlated with one another than were the regenerative point and standard deviation

estimates, Jte(mn) and o(nm).

The above mentioned experiments, the results of which are compiled in

Tables 1, 2, and 3, were conducted as follows. The systems tested, as in Examples 1

and 2, were highly congested M/M/l and M/G/l queues (p - 0.9). For each system

and several combinations of m sections, n cycles per section and subsection lengths

{nk}, R independent simulations of m x n cycles were performed. These queues were

simulated using the FORTRAN language and the random number generator described in

Learmonth and Lewis (1973). Different seeds for the generator were used for differ-

ent systems and different values of a x n. On each replication the following

quantities were computed: %(nm), akoAe(m,n), a'e(mmk,nk), a(m), uma (m,n) and

a4e(mmk,nk). The entries in the tables are best explained by an example.

Consider the first row of Table 2. Let e 1 (4000) and oi(4000), for

i - 1,...,R, be respectively the realizations of the regenerative point and standard

deviation estimates based on the 4000 cycles of the ith replication (m - 8, n- 500).

The column labeled W contains the sample average, say W , of {1ei( 40 00 ),
i- IR

i - 1 ... 9R) 4 -R I (4000)/R a 8.76. This is an unbiased estimate of

i41
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E(Ae(4000)), whose value is unknown. The sample standard deviation of We is

S ) [I~m{ei(4000)- g 2/R(R-1)1I/2 0.09 and is listed in the column

-labeled. s(W).. Thus .a90%.confidence-int-erval for. • .(t(4000) is -,76-+ 1,645 X 0.09.-

a 8.76 + 0.15. Since for this example E() - 9.00 does not fall within this con-

fidence interval we conclude that )e(4000) is significantly biased. An estimate
yR- 2

of the mean squared error of te(4000), MSE yR 1 (&ei(4000) - E(W)) 2/R - 0.87,

is listed in the MSE column of Table 2. Similarly estimates of the correlation

and Spearman, or rank, correlation coefficients (Snedecor and Cochran (1967))

between Jte(4000) and ;(4000), 0.77 and 0.67, respectively, are listed.

Vsing U1(40 00) and oi(40 0 0) alleged 90% confidence intervals,

S1.64 5ci(4 0 0 0), for E(W) were also formed. The fraction of these

confidence intervals that actually contained E(W) is reported in the column labeled

"90% coverage." This fraction, called "(90%) coverage," should be close to 0.90

if in fact valid confidence intervals are being formed. Any coverage less than

or equal to 0.85 in Table 2 (with R - 100) and any coverage less than or equal

to 0.865 in Tables 1 and 3 (with R - 200) are significantly less than 0.90

at the 0.10 level.

Table 1 focuses on the effects of changing the set of subsection lengths

{nk} on the aJAe estimate. The table reports results of simulations of 2000

cycles of the M/M/l queue with p - 0.9. The graphs of Section 6 show this to be

a relatively short run length. The estimates in this table used a polynomial

of degree 3 in the regression; degrees 1 and 2 are omitted since they showed the

same trends but with higher bias and lower coverage. Notice that the an'ate

estimates for which the smallest value of nk is n/10 (subsection sets

S3' S4' S7 and S. in the table) show less bias and higher coverage than those

with values of nk < n/10 (sets S , S 2, S5 and S6). The values of nk in

subsection sets S3 and S7 are n/l0, [n/7], n/5, n/4, [n/31, n/2, and n,

which is the recommended set of points. Due to the high correlation between the
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estimates for different values of nk, there is little, if any, advantage in using

* *pr. values of nk than are in the recomended sets (compare sets S3 versus S4

and S7 versus S). The o.ote estimate is relatively insensitive to the subsection . .

lengths as long as they are not too small. However, in some cases adding points that

are not divisors of .n will increase the Mate's variance. The set of points recom-

mended above is relatively small and has consistently yielded satisfactory results.

Tables 2 and 3 report the results of regenerative simulations with more

cycles than the simulation of Table 1. The main trends to notice in these tables

are that:

(i) the bias, standard deviation, coverage and mse of Mak.(m,n) is comparable

to that of /we(mn);

(ii) aAaAe(m,n) showe-4oer bias, lower mse and higher (truer) coverage than a e(m,n),

(iiI) for fixed values of m x n it is preferable to have small values of m,

the number of sections, in terms of bias, mse, coverage and correlation

between point and standard deviation estimates, and

(iv) the correlation between Ae(an) and ;(mn) is higher than that between

LaAe(m,n) and MAAte(m,n).

This last property warrants further discussion. As nk gets large the Me(J,ink)ls

converge to normal random variables and since JAc(j,n) is a linear combination of

4PZe(Jmk,n-k), k - 1,...,Kl, it too converges to normality. Thus ahme(m,n)

and 46&te(m,n) are asymptotically independent. The nonzero correlations in

Tables 2 and 3 indicate that for these highly congested queues the convergence

to normality is very slow and that the independence of mean and variance is quite

sensitive to the normality assumption. Of course these correlations are seen in

Tables 2 and 3 to be less than the correlation between Ate(mn) and o(mn). Also

non-parametric methods can be used with the set of m 4ke(j,n)'s.

43



The high correlation between 4e(N) and o(N), where N - mn, is of particular,

concern since sequential rules for determining simulation run lengths typically rely

on the relative width of a confidence interval, a multiple of a(N)/'e(N), as a

.. .... ... . a " .. . .. .. .. .. ... 4 . 4 a ... .. " a....
stopping criterion [Lavenberg and Sauer (1977)]. If 4e(N) is smaller than

usual, then because of the high correlation ;(N) will also be smaller than usual.

This leads to a"low miss!of the true answer, i.e. an unusually small confidence

interval centered about an unusually small point estimate. Since sequential rules

are specifically designed to stop on small confidence intervals, the rule inevitably

stops a large proportion of low misses. This will not be a problem with the graphical

methodology given here, since in addition to the lower correlation between akaAe(m,n)

and 44zWte(m,n), the distributional information displayed will guard against the

skewed data which causes the low miss.

8. SUMMARY AND FURTHER WORK

The statistical and graphical methodology given in this paper has been shown

to be very effective in verifying the bias and normality properties of regenerative

estimates and in sectioning up a regenerative simulation so that more reliable standard

deviation estimates and confidence interval estimates can be obtained than with the

usual regenerative methodology.

Although the design of the regression for the regression-adjusted regenerative

estimates has been shown to be robust in the cases considered, analytic results to

confirm this in a broader class of simulation situations will be pursued. The

regression-based variance estimate for the regenerative estimate also needs to be

explored further. This will be useful when applications of the methodology to other

statistical and simulation output situations is considered.

Another point to be explored is the use of robust regression techniques,

as at 311. This could be fruitful because the te(j,nk)'s are highly non-normal,

as can be seen in Figure 4C at nk - 50.
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Finally we note that the regression-adjusted estimation procedure and its

associated graphics can be applied in many other areas of statistics, and in

particular in the statistical analysis of simulation outputs. Thus if one has an

estimator 8(n) - 8(X 1,...,X) of a parameter 8 from an i.i.d. sample Xi,...,Xn

similar estimates O(J,nk), J I 
1'..'k, can be formed from sk  subsections of

the sample for k - 1,...,K to give a regression-adjusted estimator, with graphics,

just as it was done for the regenerative estimator Ae(n). This application,

and multivariate extensions, will be explored elsewhere.
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Table 1

•. ,, . .Effects of Subsect:Lon. engths on A&aAep Estimates o£. E(U)uP .9.0ai.. *, .

in the IM// Queue with p - 0.9. Here R - 200.

Set of
Subsection

Lengths for 90%
Estimate Mau/ W S (W) Coverage SE

A9(2000) 8.725 .086 .810 1.552

aote(10,200) 8.086 .071 .715 1.847

a~e(20,100) 7.513 .061 .460 2.948

oaA~e(10,200) S1  8.466 .085 .820 1.707

oa me(10,200) S2  8.459 .075 .820 1.424

atae(lO .200) S3 8.753 .090 .865 1.661

a'LMe(10,200) S4  8.673 .088 .850 1.659

a, ,e(20,100) S5  8.172 .077 .725 1.864

a,,fte (20,100) S6 8.129 .068 .730 1.691

aa4e(20,100) S 7 8.466 .078 .790 1.485

aa0ae(20,100) S8  8.459 .081 .780 1.592

Degree of polynomial fitted in regression was 3.

S1 U {nk:n k - 5k, k - 1,...,40)

S2 ' {n k:nk = 5,10, 20, 28, 40, 50, 66, 100, 2001

S3 a {nk:n k - 20,28, 40, 50, 66,100,2001

S4 ' {nk:n k - 20 + (k-1)5, k - 1,..., 371

S5 - {nk:nk - 4 + (k-1)3, k = 1,..., 331

S6 {Uk:nk - 4, 7, 10, 14, 20, 25, 33, 50, 1001

S7 - {nk:nk - 10,14, 20, 25, 33, 50,100)

8  {nk:nk - 10 + (k-1)3, k - 1,..., 311
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Table 2

Simulation Results for Estimates of E(W) - 9.00

in M/N/l Queue with p - 0.9. Here R - 100.

Spearman
- 90% Correlation Correlation

Estimate W S(W) Coverage MSE (W,a(W)) (WOM))

Ae(4000) 8.76 .09 .84 .87 .77 .67

a&te(8,500)(d=2)* 8.74 .09 .87 .87 .64 .48

aha.e(8,500)(d-3) 8.75 .09 .87 .88 .62 .49

oi4e(8,500) 8.47 .08 .81 .95 ats** na

a/aAe(Z6,250(d-2) 8.63 .09 .84 .87 .70 .58

aouve(Z6,250)(d-3) 8.74 .10 .86 .98 .75 .65

a&e(16,250) 8.20 .08 .72 1.23 na na

4e(8000) 8.99 .07 .86 .50 .71 .72

aOtme(8,1000)(d-2) 9.00 .07 .93 .52 .48 .36

aAa.ze(8,1000)(d-3) 9.02 .07 .93 .53 .49 .34

aie(8,1000) 8.83 .07 .88 .49 na na

ana'e(16,500)(d-2) 8.94 .07 .88 .49 .56 .47

akae(16,500)(d-3) 8.99 .07 .87 .52 .62 .58

aie(16,500) 8.66 .06 .75 .53 na na

te(16000) 9.04 .05 .92 .22 .64 .59

MaAae(8,2000)(d-2) 9.05 .05 .93 .22 .50 .43

auua.(8,2000)(d-3) 9.05 .05 .89 .22 .53 .48

a&e(8,200) 8.96 .05 .88 .20 na na

wa4me(16,1000)(d-2) 9.04 .05 .93 .22 .47 .42

a/wae(16,1000)(d-3) 9.06 .05 .89 .24 .53 .48

a4e(16,1000) 8.88 .04 .87 .21 na na

aAaLe(32,500)(d-2) 9.00 .05 .91 .20 .54 .49

oJto&ge(32,500)(d-3) 9.04 .05 .91 .23 .59 .56

o4e(32,500) 8.71 .04 .79 .26 na na

d = degree of polynomial fitted in regression

na:not available

subsection lengths fnk } - n/10, [n/71, n/5,n/4, [n/3], n/2, n
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Table 3

........ . ... lation Results for Estimates of E(W) 12.77 in M/G/1 Queue
, V 0. . . . . .. . ... .. . ... t . . .• " - . . %# 9 . - • . " e

with p - 0.9 (X * 1.0, PZ 0.5, v2 = 2.0, p - 0.33). Here R - 200.

Spearman
Correlation Correlation

90%
Estimate W S(W) Coverage MSE (WSM(W)) (W.S(U)

te (5000) 12.62 .09 .810 1.73 .71 .77

aAJte(l0,500)(d=2)* 12.56 .09 .865 1.78 .61 .60

aAake(10,500)(d-3) 12.61 .10 .875 1.89 .62 .60

ateO(10,500) 12.03 .08 .770 2.02 na** na

Ate(10000) 12.64 .07 .850 1.03 .70 .71

a.JA(0,1000)(d-2) 12.66 .07 .880 1.00 .50 .45

aJAue(10,1000)(d-3) 12.72 .07 .910 1.01 .52 .46

"~e(10,1000) 12.39 .07 .860 1.04 na na

aAaoe(20,500)(d-2) 12.51 .07 .825 1.16 .60 .58

alt~ie(20,500)(d-3) 12.60 .08 .825 1.22 .65 .63

"e(20,500) 12.00 .07 .700 1.54 na naIte(20000) 12.78 .05 .855 .51 .72 .73

aft£ak(5,4000)(d-2) 12.80 .05 .885 .51 .39 .36

alake(5,4000)(d-3) 12.80 .05 .880 .53 .37 .35

aUt(5,4000) 12.71 .05 .870 .50 na na

akAWe(10,2000)(d-2) 12.78 .05 .880 .50 .49 .49

aka~e(10,2000)(d-3) 12.81 .05 .880 .53 .52 .52

"te(10,2000) 12.63 .05 .820 .50 na na

aute(20,1000)(d-2) 12.73 .05 .860 .52 .52 .49

MAate(20,1000)(d-3) 12.79 .05 .855 .56 .55 .52

441(20,1000) 12.47 .05 .815 .59 na na

d - dgree of polynomial fitted in regression

na: not available

for n - 500, {nk } - 50, 71, 100, 125, 166, 250, 500

n - 1000, {nk ) - 50, 100, 125, 166, 200, 250, 333, 500, 1000

n - 2000 {nk) - 100, 166, 200, 250, 400, 500, 666, 1000, 2000

n - 4000 {nk ) - 400, 571, 800, 1000, 1333, 2000, 4000
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Table 4

Summary of Notation

te(p) --regenerative estimate based on p cycles; = Yk/ Tk-i•

Ae(L,p) --realization of 4e(p) on the Lth subsection out of the mk sub-

sections in a replication.

ake(mk,nk) --average regenerative estimate from subsections of length mk;
= ) te(J,n k ) /m k .

-

aAe(j,mk,nk) --realization of aAe(mknk) on the jth replication.

u-n(mk,nk) --overall average regenerative estimate for mmk subsections of
m

length nk; wjy ae(J,mk,nk)/m.

-6(mmk,nk) -- sample variance of T-e(v,nk);

- 2 1/2I (ote(j,mk,n k ) - ZM(mmkZn.))2/M11-1)} 1I 2

j-l

Ame (n) --regression adjusted regenerative estimate using n cycles.

uAe(j,n) --realization of 4Aae(n) on the jth replication of a section of

length n.

aaAke(mn) --average regression adjusted regenerative estimate from m sections
m

of length n;- I u Oe(J,n)/m.
J-i

Madu(m,n) --sample standard deviation of aoame(m,n);

{ (A.Wi(j,n) - .4ae(m,n))2/m(m-1)}
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